Providing theoretical learning guarantees to Deep Learning Networks

نویسندگان

  • Rodrigo Fernandes de Mello
  • Martha Dais Ferreira
  • Moacir Antonelli Ponti
چکیده

Deep Learning (DL) is one of the most common subjects when Machine Learning and Data Science approaches are considered. There are clearly two movements related to DL: the first aggregates researchers in quest to outperform other algorithms from literature, trying to win contests by considering often small decreases in the empirical risk; and the second investigates overfitting evidences, questioning the learning capabilities of DL classifiers. Motivated by such opposed points of view, this paper employs the Statistical Learning Theory (SLT) to study the convergence of Deep Neural Networks, with particular interest in Convolutional Neural Networks. In order to draw theoretical conclusions, we propose an approach to estimate the Shattering coefficient of those classification algorithms, providing a lower bound for the complexity of their space of admissible functions, a.k.a. algorithm bias. Based on such estimator, we generalize the complexity of network biases, and, next, we study AlexNet and VGG16 architectures in the point of view of their Shattering coefficients, and number of training examples required to provide theoretical learning guarantees. From our theoretical formulation, we show the conditions which Deep Neural Networks learn as well as point out another issue: DL benchmarks may be strictly driven by empirical risks, disregarding the complexity of algorithms biases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Simulate Congestion Prediction in a Wireless Network Using the LSTM Deep Learning Model

Achieved wireless networks since its beginning the prevalent wide due to the increasing wireless devices represented by smart phones and laptop, and the proliferation of networks coincides with the high speed and ease of use of the Internet and enjoy the delivery of various data such as video clips and games. Here's the show the congestion problem arises and represent   aim of the research is t...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.10292  شماره 

صفحات  -

تاریخ انتشار 2017